Thesis CTDIA prize

The Academic Dalcimar Casanova won the second best dissertation in the field of Artificial Intelligence. The prize was awarded by the Special Committee on Artificial Intelligence of the Brazilian Computer Society (SBC-CEIA) during the 2010 Joint Conference.

To read more visit: VII Best MSc Dissertation/PhD Thesis Contest in Artificial Intelligence

Enhancing the Texture Attribute with Partial Differential Equations

{Machado, Bruno Brandoli and Goncalves, Wesley Nunes and Bruno, Odemir Martinez

Advanced Concepts for Intelligent Vision systems,337-348,2011

Texture is an important visual attribute used to discriminate images. Although statistical features have been successful, texture descriptors do not capture the richness of details present in the images. In this paper we propose a novel approach for texture analysis based on partial differential equations (PDE) of Perona and Malik. Basically, an input image f is decomposed into two components f = u + v, where u represents the cartoon component and v represents the textural component. We show how this procedure can be employed to enhance the texture attribute. Based on the enhanced texture information, Gabor filters are applied in order to compose a feature vector. Experiments on two benchmark datasets demonstrate the superior performance of our approach with an improvement of almost 6%. The results strongly suggest that the proposed approach can be successfully combined with different methods of texture analysis.