Stability properties of cellular automata

dr. ir. Jan Baetens Prof. dr. Bernard De Baets

Faculty of Bioscience Engineering Ghent University

February 26, 2013

Outline

Introduction

Stability theory of continuous systems

Characterizing CA dynamics

- Incentives and issues
- Stability assessment
- Jacobian-based measure
- Simulation study and results
- 6 The story continues

Ongoing work

- Steady-state?
- Periodicity?
- Chaos?

- Steady-state?
- Periodicity?
- Chaos?

- Steady-state?
- Periodicity?
- Chaos?

- Steady-state?
- Periodicity?
- Chaos?

Outline

Outline

Stability theory of continuous systems

- Characterizing CA dynamics
 - Incentives and issues
 - Stability assessment
 - Jacobian-based measure
- 5 Simulation study and results
- 6 The story continues
- **7** Ongoing work

Methodology

• Evolution is displayed in phase space

Methodology

- Evolution is displayed in phase space
- Fate of nearby trajectories is tracked as time elapses

Zero Lyapunov exponent

Methodology

- Evolution is displayed in phase space
- Fate of close trajectories is tracked as time elapses

Negative Lyapunov exponent

Methodology

- Evolution is displayed in phase space
- Fate of nearby trajectories is tracked as time elapses
- Continuous dynamical systems: 'nearby' is well defined
- Discrete dynamical systems: notion of 'nearby' gets blurred

Outline

- Outline
- 2 Introduction
- 3 Stability theory of continuous systems
 - Characterizing CA dynamics
 - Incentives and issues
 - Stability assessment
 - Jacobian-based measure
- 5) Simulation study and results
- 6 The story continues
- **Ongoing work**

- Unexpected since CA are inherently simple
- Caught the attention of numerous researchers

- Unexpected since CA are inherently simple
- Caught the attention of numerous researchers

- Unexpected since CA are inherently simple
- Caught the attention of numerous researchers

- Unexpected since CA are inherently simple
- Caught the attention of numerous researchers

How to grasp CA dynamics?

- Wolfram's classification scheme
 - Four behavioral classes
 - Presumption: every CA can be assigned to one or another class
 - Involves a trace of subjectivity (Class 3 vs. class 4)
 - Time-consuming, manual classification
- Towards a quantitative approach
 - measures grasping CA dynamics
 - do not require a personal opinion: objective
 - can be calculated automatically
 - many have been proposed:
 - entropies
 - Hamming distance
 - Langton parameter
 - Lyapunov exponents

How to grasp CA dynamics?

- Wolfram's classification scheme
 - Four behavioral classes
 - Presumption: every CA can be assigned to one or another class
 - Involves a trace of subjectivity (Class 3 vs. class 4)
 - Time-consuming, manual classification
- Towards a quantitative approach
 - measures grasping CA dynamics
 - do not require a personal opinion: objective
 - can be calculated automatically
 - many have been proposed:
 - entropies
 - Hamming distance
 - Langton parameter
 - Lyapunov exponents

Lyapunov exponents

- Quantifies the speed of divergence of trajectories in phase space originating from a perturbation of one of the cells' state
- Suggested by Wolfram, formalized by Shereshevsky (1991)
- 1D CA: directional Lyapunov exponents
- Higher-dimensional CA: directionality becomes blurred
- Way out: non-directional Lyapunov exponent (Bagnoli et al., 1992)
 - a theoretical upper bound can be derived
 - based upon a Jacobian-based measure
 - restricted to CA based upon regular tessellations

Nearby trajectories

- $S = \{0, 1\}$
- Evolution from two initial configurations that differ in only one cell

Nearby trajectories

- *S* = {0,1}
- Evolution from two initial configurations that differ in only one cell

0th time step

0th time step

Baetens & De Baets (KERMIT)

CA as dynamical systems

February 26, 2013 14 / 29

1st time step

2nd time step

Baetens & De Baets (KERMIT)

2nd time step

2nd time step

2nd time step

Lyapunov exponents of two-state cellular automata

Maximum Lyapunov exponent (MLE):

$$\lambda = \lim_{t \to \infty} \frac{1}{t} \log \left(\frac{\epsilon_t}{\epsilon_0} \right)$$

with

$$\epsilon_t = |\{i \mid s(c_i, t) \neq s^*(c_i, t)\}|$$

- Quantify the rate with which the number of defects increases
- A theoretical upper bound on the Lyapunov exponent (λ) can be derived
- Stability classes
 - $\lambda = -\infty$: superstable
 - $\lambda = 0$: stable
 - $\lambda > 0$: unstable
- Applicable to any kind of two-state dynamical system

Baetens & De Baets (KERMIT)

CA as dynamical systems

Input sensitivity

- Question: how sensitive is \u03c6_i to an alteration of its inputs?
- Addressed for regular CA by Bagnoli et al. (1992)
- Can be reformulated more generally for variable $|N(c_i)|$
- Formulation valid for (ir)regular CA, graph CA,...:

$$\mu(t) = rac{1}{|\mathcal{T}^*|} \sum_{c_i} rac{1}{|\mathcal{N}(c_i)|} \sum_{j=1}^{|\mathcal{N}(c_i)|} J_{ii_j}$$

- J: $|\mathcal{T}^*| \times |\mathcal{T}^*|$ Jacobian
- $J_{ij} = 1$ iff an alteration of $s(c_j, t)$ (Boolean complement) affects $s(c_i, t+1)$
- Analysis based on its geometric mean $ar{\mu} \in [0,1]$ after ${\mathcal T}$ time steps

An upper bound on the MLE of irregular CA

The number of cells that is infected by a defective c_i during one time step:

 *e*_{t+1}

 ϵ_t

• This number is upper bounded by $|N(c_i)|$

• A damaged c_i gives rise to at most $|N(c_i)|$ additional defects

• Implication: $ar{\mu}=1$ (and vice versa)

Baetens & De Baets (KERMIT)

An upper bound on the MLE of irregular CA

- Irregular tessellations, graph CA: variable $|N(c_i)|$
- Mean-field approximation for $t \to \infty$: $|N(c_i)| \approx \overline{V}$
- Mean-field estimate of the upper bound on the MLE

$$\lambda_m = \log\left(\overline{V}\right)$$

• For a given $\bar{\mu}$:

$$\lambda_m(\bar{\mu}) = \log\left(\overline{V}\bar{\mu}\right)$$

since $\overline{V}\overline{\mu}$ gives the number of susceptible cells

Outline

- Outline
- 2 Introduction
- 3 Stability theory of continuous systems
- 4 Characterizing CA dynamics
 - Incentives and issues
 - Stability assessment
 - Jacobian-based measure

Simulation study and results

- 6) The story continues
- **7** Ongoing work

Simulation setup

- \mathcal{T}^* : Voronoi tessellation containing 675 cells
- Periodic boundary conditions
- λ averaged over an ensemble of initial perturbations
- CA family: 256 (2,7) irregular totalistic CA

Simulation results

Simulation results

Simulation results

Outline

- Outline
- 2 Introduction
- 3 Stability theory of continuous systems
- Oharacterizing CA dynamics
 - Incentives and issues
 - Stability assessment
 - Jacobian-based measure
- 5) Simulation study and results
- 6 The story continues
 - **7** Ongoing work

- Topology
 - stability can be strongly affected by the characteristics of the underlying topology
 - topological bifurcation points emerge

- Topology
 - stability can be strongly affected by the characteristics of the underlying topology
 - topological bifurcation points emerge

- Topology
 - stability can be strongly affected by the characteristics of the underlying topology
 - topological bifurcation points emerge

- Topology
 - stability can be strongly affected by the characteristics of the underlying topology
 - topological bifurcation points emerge

Topological Lyapunov exponents

Prerequisites for instability

Baetens & De Baets (KERMIT)

Outline

- Outline
- 2 Introduction
- 3 Stability theory of continuous systems
- Oharacterizing CA dynamics
 - Incentives and issues
 - Stability assessment
 - Jacobian-based measure
- 5) Simulation study and results
- **5** The story continues

Ongoing work

The full spectra

Baetens & De Baets (KERMIT)

Conclusions

- Theoretical upper bound on the MLE can be derived
- $\bullet\,$ The dynamical properties of a CA family can be summarized in a $\lambda\text{-}\bar{\mu}$ diagram
- Proposed methodology is applicable to any family of 2-state CA
- What is the meaning of the full spectrum?