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Introduction

Question

What happens to a dynamical system in the end?

Steady-state?

Periodicity?

Chaos?
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Stability theory of continuous systems

Lyapunovian stability

Methodology

Evolution is displayed in phase space

Baetens & De Baets (KERMIT) CA as dynamical systems February 26, 2013 5 / 29


PendulumPerio.avi
Media File (video/avi)



Stability theory of continuous systems

Lyapunovian stability

Methodology

Evolution is displayed in phase space

Fate of nearby trajectories is tracked as time elapses

Zero Lyapunov exponent
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Stability theory of continuous systems

Lyapunovian stability

Methodology

Evolution is displayed in phase space

Fate of close trajectories is tracked as time elapses

Negative Lyapunov exponent
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Stability theory of continuous systems

Lyapunovian stability

Methodology

Evolution is displayed in phase space

Fate of nearby trajectories is tracked as time elapses

Continuous dynamical systems: ‘nearby’ is well defined

Discrete dynamical systems: notion of ‘nearby’ gets blurred
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Characterizing CA dynamics

Outline

1 Outline

2 Introduction

3 Stability theory of continuous systems

4 Characterizing CA dynamics
Incentives and issues
Stability assessment
Jacobian-based measure

5 Simulation study and results

6 The story continues

7 Ongoing work

Baetens & De Baets (KERMIT) CA as dynamical systems February 26, 2013 9 / 29



Characterizing CA dynamics Incentives and issues

CA dynamics

Overwhelming variety of evolved spatio-temporal patterns

Unexpected since CA are inherently simple

Caught the attention of numerous researchers
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Characterizing CA dynamics Incentives and issues

How to grasp CA dynamics?

Wolfram’s classification scheme

Four behavioral classes
Presumption: every CA can be assigned to one or another class
Involves a trace of subjectivity (Class 3 vs. class 4)
Time-consuming, manual classification

Towards a quantitative approach

measures grasping CA dynamics
do not require a personal opinion: objective
can be calculated automatically
many have been proposed:

entropies

Hamming distance

Langton parameter

Lyapunov exponents

Baetens & De Baets (KERMIT) CA as dynamical systems February 26, 2013 11 / 29



Characterizing CA dynamics Incentives and issues

How to grasp CA dynamics?

Wolfram’s classification scheme

Four behavioral classes
Presumption: every CA can be assigned to one or another class
Involves a trace of subjectivity (Class 3 vs. class 4)
Time-consuming, manual classification

Towards a quantitative approach

measures grasping CA dynamics
do not require a personal opinion: objective
can be calculated automatically
many have been proposed:

entropies

Hamming distance

Langton parameter

Lyapunov exponents

Baetens & De Baets (KERMIT) CA as dynamical systems February 26, 2013 11 / 29



Characterizing CA dynamics Incentives and issues

Lyapunov exponents

Quantifies the speed of divergence of trajectories in phase space
originating from a perturbation of one of the cells’ state

Suggested by Wolfram, formalized by Shereshevsky (1991)

1D CA: directional Lyapunov exponents

Higher-dimensional CA: directionality becomes blurred

Way out: non-directional Lyapunov exponent (Bagnoli et al., 1992)

a theoretical upper bound can be derived
based upon a Jacobian-based measure
restricted to CA based upon regular tessellations
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Characterizing CA dynamics Stability assessment

Nearby trajectories

S = {0, 1}

Evolution from two initial configurations that differ in only one cell
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Characterizing CA dynamics Stability assessment

Accumulation of defects
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Characterizing CA dynamics Stability assessment

Accumulation of defects

2nd time step
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Characterizing CA dynamics Stability assessment

Lyapunov exponents of two-state cellular automata

Maximum Lyapunov exponent (MLE):

λ = lim
t→∞

1

t
log

(

ǫt

ǫ0

)

with
ǫt = |{i | s(ci , t) 6= s

∗(ci , t)}|

Quantify the rate with which the number of defects increases

A theoretical upper bound on the Lyapunov exponent (λ) can be
derived
Stability classes

λ = −∞: superstable
λ = 0: stable
λ > 0: unstable

Applicable to any kind of two-state dynamical system
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Characterizing CA dynamics Jacobian-based measure

Input sensitivity

Question: how sensitive is φi to an alteration of its inputs?

Addressed for regular CA by Bagnoli et al. (1992)

Can be reformulated more generally for variable |N(ci )|

Formulation valid for (ir)regular CA, graph CA,. . . :

µ(t) =
1

|T ∗|

∑

ci

1

|N(ci )|

|N(ci )|
∑

j=1

Jiij

J: |T ∗| × |T ∗| Jacobian

Jij = 1 iff an alteration of s(cj , t) (Boolean complement) affects
s(ci , t + 1)

Analysis based on its geometric mean µ̄ ∈ [0, 1] after T time steps
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Characterizing CA dynamics Jacobian-based measure

An upper bound on the MLE of irregular CA

The number of cells that is infected by a defective ci during one time
step:

ǫt+1

ǫt

This number is upper bounded by |N(ci )|
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A damaged ci gives rise to at most |N(ci )| additional defects

Implication: µ̄ = 1 (and vice versa)
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Characterizing CA dynamics Jacobian-based measure

An upper bound on the MLE of irregular CA

Irregular tessellations, graph CA: variable |N(ci )|

Mean-field approximation for t → ∞: |N(ci )| ≈ V

Mean-field estimate of the upper bound on the MLE

λm = log
(

V
)

For a given µ̄:
λm(µ̄) = log

(

V µ̄
)

since V µ̄ gives the number of susceptible cells
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Simulation study and results
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Simulation study and results

Simulation setup

T ∗: Voronoi tessellation containing 675 cells

Periodic boundary conditions

λ averaged over an ensemble of initial perturbations

CA family: 256 (2,7) irregular totalistic CA
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Simulation study and results

Simulation results
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Simulation study and results

Simulation results
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The story continues
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The story continues

Topological bifurcations

Topology

stability can be strongly affected by the characteristics of the
underlying topology
topological bifurcation points emerge
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The story continues

Topological Lyapunov exponents
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The story continues

Prerequisites for instability
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Ongoing work
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Ongoing work

The full spectra
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Ongoing work

Conclusions

Theoretical upper bound on the MLE can be derived

The dynamical properties of a CA family can be summarized in a λ-µ̄
diagram

Proposed methodology is applicable to any family of 2-state CA

What is the meaning of the full spectrum?
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