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Spatio-temporal modelling Definitions

Environmental processes

Environmental process

A process, action, operation, or cycle that occurs naturally in the
environment without the intervention or aid of man.

Biological process

An environmental process whose
actors are living organisms such
as fungi, plants or animals.
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Spatio-temporal modelling Definitions

Environmental processes

Environmental process

A process, action, operation, or cycle that occurs naturally in the
environment without the intervention or aid of man.

Natural process

A naturally occurring
phenomenon in which no living
organisms are involved.
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Spatio-temporal modelling Definitions

Environmental processes

Bring forth spatio-temporal dynamics

Perceived by humans as spatio-temporal variability
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Spatio-temporal modelling Definitions

Environmental processes

Bring forth spatio-temporal dynamics

Perceived by humans as spatio-temporal variability
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Spatio-temporal modelling Motivation and data availability

A logical need

All processes taking place on earth are inherently characterized by
both spatial and temporal dynamics

Each organic being is either directly or indirectly related in
the most important manner to other organic beings.

Darwin, 1859

Temporal models largely discard the intricate spatial dynamics by
assuming homogeneity

Nowadays, increasing availability of spatial observation techniques,
yields

1 information about the spatial structure of the medium in which the
modelled processes occur

2 spatio-temporal data enabling validation of a model
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Spatio-temporal modelling Motivation and data availability

Spatial data

micro

meso

macro
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Spatio-temporal modelling Motivation and data availability

Spatial data

micro

meso

macro

confocal laser scanning microscopy

magnetic resonance imaging

spectrometry

tomography
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Spatio-temporal modelling Motivation and data availability

Spatial data

micro

meso

macro

c©Institut Pasteur

Baetens & De Baets (KERMIT) Cellular automata and beyond February 25, 2013 6 / 50



Spatio-temporal modelling Motivation and data availability

Spatial data

micro

meso

macro

digital photography

magnetic resonance imaging

thermography
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Spatio-temporal modelling Motivation and data availability

Spatial data

micro

meso

macro

Baetens & De Baets (KERMIT) Cellular automata and beyond February 25, 2013 6 / 50



Spatio-temporal modelling Motivation and data availability

Spatial data

micro

meso

macro

aerial photography

radar imaging

satellite imaging
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Spatio-temporal modelling Motivation and data availability

Spatial data

micro

meso

macro

c©VITO
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Spatio-temporal modelling Modelling paradigms

Mathematical models of environmental processes

Mathematical model

A mathematical model is an abstract, simplified, mathematical construct
related to a part of reality and created for a particular purpose.
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Mathematical models of environmental processes

Mathematical model

A mathematical model is an abstract, simplified, mathematical construct
related to a part of reality and created for a particular purpose.
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Spatio-temporal modelling Modelling paradigms

Mathematical models of environmental processes

Constructs must mimic the involved spatio-temporal dynamics

C C C Partial differential equation (PDE)

state time space
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+
∂2ψ

∂z2
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Spatio-temporal modelling Modelling paradigms

Mathematical models of environmental processes

Constructs must mimic the involved spatio-temporal dynamics

C C C Partial differential equation (PDE)

state time space

The moment one gives up symbolic manipulation as a major
motive for using differential equations, one starts wondering
whether one should still keep them as the starting point for
numerical modelling; isn’t there a less roundabout way to make
nature model itself?

– Tommaso Toffoli (1984) –
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Spatio-temporal modelling Modelling paradigms

Mathematical models of environmental processes

Constructs must mimic the involved spatio-temporal dynamics

C C C Partial differential equation (PDE)

D D D

.

.

.

D D C

C D D

Cellular automaton (CA)

Coupled-map lattice (CML)

Agent-based model (ABM)

state time space
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Spatio-temporal modelling Modelling paradigms

To PDE or not to PDE?

Omnipresent since

rigorous mathematical formulation of macroscopic laws

proven their efficacy

relatively simple under simplifying assumptions (e.g. homogeneity)

allow for well-established mathematical analysis

(less computationally demanding)

though

mostly approximate solutions obtained by numerical methods
truncation and approximation errors
stability problems
vast number of (complex) methods, often problem specific

limited to relatively simple initial and boundary conditions

formulation in heterogeneous media less straightforward

incompatible with spatio-temporal data in vector or raster format
(inherently discrete)
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Spatio-temporal modelling Modelling paradigms

Let’s go discrete . . .

CA are gaining growing attention from applied scientists

models mimic life as it is: macroscopic laws may emerge

CA cells may represent living organisms

well-suited for modelling processes in heterogeneous media

irregular boundary and/or initial conditions can be incorporated easily

no need for numerical approximation methods

compatible with spatio-temporal data

may lower the need for expensive, time-consuming laboratory
experiments
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Spatio-temporal modelling Modelling paradigms

. . ., but

lack of quantitative agreement between CA simulations and observed
dynamics

computationally expensive

lack of a rigorous engineering framework

sensitivity analysis
model identification

time steps versus time

difficult thorough mathematical analysis

skepticism
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Cellular automata

Outline
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Cellular automata

Definition

Cellular automata are simple mathematical idealizations of
natural systems. They consist of a lattice of discrete identical
sites, each site taking on a finite set of, say, integer values. The
values of the sites evolve in discrete time steps according to
deterministic rules that specify the value of each site in terms of
the values of neighboring sites.

S. Wolfram, 1983
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Cellular automata Historical background

Earliest developments

Trace back to the work of Turing and von Neumann (early 1900s)
Intelligent automata imitating abilities of the human brain (Turing)
Quest for a general theory of complicated automata: natural automata
and artificial automata (von Neumann)
Construction of an artificial, self-reproducing automaton (1940s)

Stanislaw Ulam suggests von Neumann to use cells as such an
automaton’s entities: a CA is born (end 1940s)
von Neumann dies in 1957
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Cellular automata Historical background

Recent resurrection

Research on CAs fizzled out owing to the decease of its founders and
the lack of computing power

Development of modern computers in the 70s and the growing
awareness of the shortcomings of PDEs led to revived interest

computer games: ‘Brian’s Brain’, ‘The Game of Life’ (1970), ‘Wa-Tor’
(1984)
fundamental research: stability properties by Wolfram, Toffoli, . . .
CA-based models: chemistry, ecology, epidemiology, forestry,
geography, hydrology, . . .
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Cellular automata Formalization

Cellular automaton

A cellular automaton C is a quintuple

C = 〈T , S , s,N,Φ〉

T is a countably infinite tessellation of a d-dimensional Euclidean
space Rd , consisting of cells ci , i ∈ N.

S is a finite set of k states, often S ⊂ N.

s is the output function, yielding the state value of cell ci at the t-th
discrete time step, i.e. s(ci , t).

the neighborhood function N maps cell ci to a finite sequence

N(ci ) =
(

cij
)|N(ci )|

j=1
, consisting of |N(ci )| cells cij .

Φ = (φi )i ∈N is a family of functions φi governing ci ’s dynamics,

s(ci , t + 1) = φi
(

s̃(N(ci ), t)
)

.
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Cellular automata Formalization

Order-invariant cellular automaton

An order-invariant cellular automaton (CA) is a CA for which the update
of s(ci , t) is completely independent from the ordering imposed on the
elements of N(ci ). Consequently we may write:

φi : M|N(ci )|(S) → S ,

where M|N(ci )| denotes the set of all multisets of cardinality |N(ci )| in S,
containing at most |N(ci )| different elements and their respective
multiplicity.
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Cellular automata Unraveling the definition

Tessellations of Rd

Tessellation

A covering of an infinite geometric space without gaps or overlaps by
d-polytopes of one type or a few types

Typically:

d = 1 or d = 2 (polygons),
infrequently d = 3 (polyhedra)

regular d-polytopes:
straightforward implementation

irregular, convex d-polytopes
desirable from an application
point of view

finite tessellations T ∗ of a
compact subset of Rd
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Cellular automata Unraveling the definition

Shortcomings of regular tessellations

1 Restricted number of directions of information flow

2 Directional effects in simulation results

3 Artifacts co-evolved?

4 Limited to processes in media or on surfaces with a simple geometry

5 Incompatible with vector-based spatio-temporal data

6 Neighbourhood not unambiguously defined

ci
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Cellular automata Unraveling the definition

Irregular CA

1 Arbitrary directions of information flow

2 Less directional effects

3 CA dynamics can no longer be attributed to the regularity of the
tessellation

4 Phenomena occurring in media with a complex geometry can be
described by means of CA-based models by relying on already
well-established meshing algorithms used in finite element methods

5 Highly compatible with the vector-based data format originating
from spatial observations techniques, such as digital photography,
x-ray tomography,. . .

6 Can be employed to devise spatio-temporal models in already existing
geographical information software
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Cellular automata Unraveling the definition

The neighborhood function

Aims at selecting those cells that are considered ci ’s neighbors

Falls apart into two operations:
1 constructing a subset Ni ⊂ T containing ci ’s neighbors
2 imposing an ordering on the elements of Ni
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Cellular automata Unraveling the definition

The neighborhood function

Aims at selecting those cells that are considered ci ’s neighbors

Falls apart in two operations:
1 constructing a subset Ni ⊂ T containing ci ’s neighbors
2 imposing an ordering on the elements of Ni

Moore neighborhood

The Moore neighborhood NM
i of ci

contains those cj ∈ T that share a
vertex with ci
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Cellular automata Unraveling the definition

The neighborhood function

Aims at selecting those cells that are considered ci ’s neighbors
Falls apart in two operations:

1 constructing a subset Ni ⊂ T containing ci ’s neighbors
2 imposing an ordering on the elements of Ni

von Neumann neighborhood

The von Neumann neighborhood
N V

i of ci contains those cj ∈ T that
share an edge with ci
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Cellular automata Unraveling the definition

The neighborhood function

Aims at selecting those cells that are considered ci ’s neighbors
Falls apart in two operations:

1 constructing a subset Ni ⊂ T containing ci ’s neighbors
2 imposing an ordering on the elements of Ni

restricted von Neumann
neighborhood

The restricted von Neumann
neighborhood N V,ν

i of ci contains
those cj ∈ T that share an edge with
ci and, additionally, make up at least
a prescribed proportion ν ∈ ] 0, 1 [ of
ci ’s circumference
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Cellular automata Unraveling the definition

The neighborhood function

Aims at selecting those cells that are considered ci ’s neighbors

Falls apart in two operations:
1 constructing a subset Ni ⊂ T containing ci ’s neighbors
2 imposing an ordering on the elements of Ni

Sundry possibilities, especially if
d ≥ 3

If d = 2, the angle αij between
the line connecting ci and cj ’s
centroids, pgi and pgj , is a
straightforward choice
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Cellular automata Unraveling the definition

The neighborhood function
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Cellular automata Unraveling the definition

Transition function φi

Homogeneous cellular automaton

A homogeneous cellular automaton (CA) is a CA for which there exists a
Θ :

⋃

k∈N Sk → S such that

s(ci , t + 1) = Θ
(

s̃ (N(ci ), t)
)

.

Order-invariant homogeneous cellular automaton

An order-invariant homogeneous cellular automaton (CA) is a CA for
which there exists a Ψ :

⋃

k∈NMk(S) → S such that

s(ci , t + 1) = Ψ
(

s̃ (N(ci ), t)
)

.
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Cellular automata Unraveling the definition

Transition function φi

Two important CA families
1 Totalistic CA

order-invariant homogeneous CA for which S ⊂ N

there exists a Ω : N → S such that

s(ci , t + 1) = φi
(

s̃(N(ci ), t)
)

= Ω(σi ) ,

where σi =
∑

cj∈N(ci )
s(cj , t)

2 Outer-totalistic CA

hybrid family between order-variant homogeneous CA and
order-invariant CA
there exists a Ω∗ : S × N → S such that

s(ci , t + 1) = φi
(

s̃(N(ci ), t)
)

= Ω∗ (s(ci , t), σ
∗

i ) ,

where σ∗

i = σi − s(ci , t).
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Cellular automata Elementary CA

Introduction

Exemplary order-variant CA family on which most fundamental
research is performed

d = 1

1-polytopes represented as an ‘infinite’ sequence of cells

i

HiL Hi+1LHi-1L

... ...

S = {0, 1}, such that k = 2

N(ci ) = (ci−1, ci , ci+1) (range r = 1)

Periodic boundary conditions for mimicking T ’s infiniteness
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Cellular automata Elementary CA

Nomenclature

Θ must be conceived in such a way that every 3-tuple is mapped to
either zero (black) or one (white)

Since k = 2, 256 distinct Θ can be listed

Each rule can be assigned a natural number in [0, 255], i.e. a rule
number R , according to

R = Θ(1, 1, 1) 27 +Θ(1, 1, 0) 26 +Θ(1, 0, 1) 25 +Θ(1, 0, 0) 24+

Θ(0, 1, 1) 23 +Θ(0, 1, 0) 22 +Θ(0, 0, 1) 21 +Θ(0, 0, 0) 20
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Cellular automata Elementary CA

Nomenclature

Example: Rule 90

s(ci−1, t) s(ci , t) s(ci+1, t) s(ci , t + 1)
1 1 1 0
1 1 0 1
1 0 1 0
1 0 0 1
0 1 1 1
0 1 0 0
0 0 1 1
0 0 0 0

R = Θ(1, 1, 1) 27 +Θ(1, 1, 0) 26 +Θ(1, 0, 1) 25 +Θ(1, 0, 0) 24+

Θ(0, 1, 1) 23 +Θ(0, 1, 0) 22 +Θ(0, 0, 1) 21 +Θ(0, 0, 0) 20
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Cellular automata Elementary CA

Nomenclature

Example: Rule 90

s(ci−1, t) s(ci , t) s(ci+1, t) s(ci , t + 1)
1 1 1 0
1 1 0 1
1 0 1 0
1 0 0 1
0 1 1 1
0 1 0 0
0 0 1 1
0 0 0 0

R = 0 · 27 + 1 · 26 + 0 · 25 + 1 · 24 + 1 · 23 + 0 · 22 + 1 · 21 + 0 · 20

= 90
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Cellular automata Elementary CA

Evolving rule 90

Rule 90:
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Cellular automata Elementary CA

Evolving rule 90

Rule 90:

Suppose s0 is
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t = 1:
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Cellular automata Elementary CA

Evolving rule 90
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Cellular automata Elementary CA

Evolving rule 90

50 time steps
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Cellular automata Elementary CA

Evolving rule 90

100 time steps
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Cellular automata Elementary CA

Evolving rule 90

1000 time steps
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Cellular automata Phenomenology

Dynamical properties

Wolfram distinguished four phenomenological classes based upon
visual inspection of the space-time diagrams

Only three of them can be retrieved in continuous dynamical systems

It is assumed that this classification transfers to other CA families

So far, no counterexample overthrowing this hypothesis has been
found

Involves subjectivity

Quantitative complexity measures have been developed such as the
maximum Lyapunov exponent (MLE) λ
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Cellular automata Phenomenology

Behavioral classes: class 1

CA evolution leads to a homogeneous configuration in which, for example,
all ci ∈ T bear the same state (fixed point)

Rule 255: 100 time steps
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Cellular automata Phenomenology

Behavioral classes: class 2

CA evolution leads to a set of stable or periodic structures that are
separated and simple (limit cycle)

Rule 90: 100 time steps
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Cellular automata Phenomenology

Behavioral classes: fractals

CA rules contained in this class (e.g. rule 90) can give rise to fractal
patterns

Fractal

A fractal is a rough or fragmented geometric shape that can be
split into parts, each of which is (at least approximately) a
reduced-size copy of the whole

Mandelbrot, 1982

Exhibit self-similarity
Fractals are omnipresent in nature

coast line windings
height distribution of a mountain range
pigmentation of mammals and molluscs
soil structure

Rule 90: Sierpinski triangle
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Cellular automata Phenomenology

Self-similarity of rule 90
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Cellular automata Phenomenology

Self-similarity of rule 90: quantification

Some observations:

every triangle is built up from three congruent triangles (M = 3)
congruent triangles are scaled by a factor s = 1/2

These observations can be exploited to conceive a measure, the
fractal dimension D ∈ R+, quantifying how completely a fractal fills
space

D =
ln(M)

ln
(

1
s

)

Fractal patterns evolved using rule 90:

D =
ln(3)

ln 2

≈ 1.585

line? polygon?

Baetens & De Baets (KERMIT) Cellular automata and beyond February 25, 2013 39 / 50



Cellular automata Phenomenology

Fractals in nature

Basically, only a few artificial looking fractals can be evolved by
means of CA

In nature, a wealth of fractal-like structures can be retrieved
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Cellular automata Phenomenology

Behavioral classes: class 3

CA evolution leads to a chaotic pattern (strange attractor)

Rule 30: 100 time steps
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Cellular automata Phenomenology

Behavioral classes: class 4

CA evolution leads to complex structures, sometimes long-lived (?)

Rule 110: 100 time steps
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Cellular automata Phenomenology

Behavioral classes: class 4

CA evolution leads to complex structures, sometimes long-lived (?)

Rule 110: 1000 time steps
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Cellular automata Phenomenology

square tessellation irregular tessellation

: , , , , , , , >
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Coupled-map lattices
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Coupled-map lattices

Coupled-map lattice

A coupled-map lattice C is a quintuple

C = 〈T , s,N,i〉

T is a countably infinite tessellation of a d-dimensional Euclidean
space Rd , consisting of cells ci , i ∈ N.

s : T ×N → R is the output function, yielding the state value of cell
ci at the t-th discrete time step, i.e. s(ci , t).

the neighborhood function N maps cell ci to a finite sequence

N(ci ) =
(

cij
)|N(ci )|

j=1
, consisting of |N(ci )| cells cij .

i = iג) )i ∈N is a family of functions iג governing ci ’s dynamics,

s(ci , t + 1) = iג
(

s̃(N(ci ), t)
)

.
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SWOT analysis of discrete spatio-temporal models
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SWOT analysis of discrete spatio-temporal models

SWOT: strengths

Roundabout way of mathematical
modelling is avoided

No need for numerical
approximation methods

Compatible with spatio-temporal
data

Mean-field assumptions are not a
prerequisite

Irregular boundaries can easily be
considered

Existence of the Planck length and
time can be acknowledged
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SWOT analysis of discrete spatio-temporal models

SWOT: weaknesses

Mathematical analysis is difficult, especially in case of CAs

Stability properties of CAs are largely unexplored

Lack of means to assess the quantitative agreement between
observations and simulations

Computationally expensive

Scepticism
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SWOT analysis of discrete spatio-temporal models

SWOT: threats

Engineers and mathematicians cling to PDEs

Unknown, unloved

Improper use
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SWOT analysis of discrete spatio-temporal models

SWOT: opportunities

Macro: tracking devices

Meso: femtophotography

Micro: nanoimaging

Quantum computing

Macro: space imaging

Baetens & De Baets (KERMIT) Cellular automata and beyond February 25, 2013 50 / 50



SWOT analysis of discrete spatio-temporal models

SWOT: opportunities

Macro: tracking devices

Meso: femtophotography

Micro: nanoimaging

Quantum computing

Macro: space imaging

Baetens & De Baets (KERMIT) Cellular automata and beyond February 25, 2013 50 / 50



SWOT analysis of discrete spatio-temporal models

SWOT: opportunities

Macro: tracking devices

Meso: femtophotography

Micro: nanoimaging

Quantum computing

Macro: space imaging

Baetens & De Baets (KERMIT) Cellular automata and beyond February 25, 2013 50 / 50



SWOT analysis of discrete spatio-temporal models

SWOT: opportunities

Macro: tracking devices

Meso: femtophotography

Micro: nanoimaging

Quantum computing

Macro: space imaging

Baetens & De Baets (KERMIT) Cellular automata and beyond February 25, 2013 50 / 50



SWOT analysis of discrete spatio-temporal models

SWOT: opportunities

Macro: tracking devices

Meso: femtophotography

Micro: nanoimaging

Quantum computing

Macro: space imaging

Baetens & De Baets (KERMIT) Cellular automata and beyond February 25, 2013 50 / 50


	Overview
	Spatio-temporal modelling
	Definitions
	Motivation and data availability
	Modelling paradigms

	Cellular automata
	Historical background
	Formalization
	Unraveling the definition
	Elementary CA
	Phenomenology

	Coupled-map lattices
	SWOT analysis of discrete spatio-temporal models

