Application portfolio

dr. ir. Jan Baetens Prof. dr. Bernard De Baets

Faculty of Bioscience Engineering Ghent University

February 26, 2013

Outline

Overview

Cellular automata in practice

- The Game of Life
- Sharks and fishes
- Soil-water flow
- Thermodynamics
- Epidemic modeling
- Biological competition
- Biofilm dynamics
- Fish migration
- Fungal growth
- Chemical engineering

References

The Game of Life

- Conquest for a CA simulating life-like behavior
- Postulated by Conway in 1971
- \bullet 2D outer-totalistic CA based upon a square tessellation of \mathbb{R}^2
- $S = \{ alive, death \}$

Transition function

- survival: if c_i surrounded by two or three living neighbors
- birth: death cell surrounded by 3 living neighboring cells
- death: as a consequence of isolation , if at most 1 neighbor is alive, or by competition if surrounded by at least four living neighboring cells

The Game of Life

- Conquest for a CA simulating life-like behavior
- Postulated by Conway in 1971
- Bio-inspired mathematical game
- \bullet 2D outer-totalistic CA based upon a square tessellation of \mathbb{R}^2
- $S = \{ alive, death \}$

Transition function: mathematically

$$s\left(c_{i},t+1
ight) = \left\{egin{array}{ll} 1 &, ext{ if } |\{c_{j}\in \mathit{N}(c_{i})\mid s(c_{j},t)=1\}|=3\,, \ 0 &, ext{ if } |\{c_{j}\in \mathit{N}(c_{i})\mid s(c_{j},t)=1\}|\leq 1ee \ |\{c_{j}\in \mathit{N}(c_{i})\mid s(c_{j},t)=1\}|\geq 4\,, \ s\left(c_{i},t
ight)\,, ext{ else }. \end{array}
ight.$$

The Game of Life

Exemplary simulation

Simulation starting from a random initial condition on a 100×100 grid

Wa-Tor

- Developed by Dewdney in 1984
- Mimics the interplay between sharks and fishes
- See demo

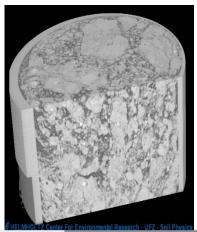
file:///D:/Doctoraat/Presentaties/Brazil2013/Applications/figu

CA approach

- 2D outer-totalistic irregular CA
- rule representing gravitational displacement of water

CA approach

- 2D outer-totalistic irregular CA
- rule representing gravitational displacement of water



Application portfolio

CCA for 2D heat flow

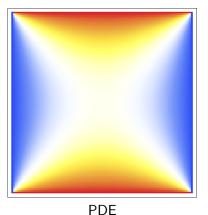
$$T(c_i,t+1) = \sum_{c_j \in \mathcal{N}(c_i)^*} rac{T(c_j,t)}{w_{ij}},$$

where $N(c_i)^* = N(c_i) \setminus \{c_i\}$ and

- $T(c_i, t)$: temperature in cell c_i a the t-th time step
- w_{ij}: proportion of c_i's circumference shared with c_j
- steady-state solution approaches the solution of the Laplace equation
- differences in material properties such as thermal conductivity can be incorporated
- irregular tessellations can be employed
- see demonstration

CCA for 2D heat flow

Heating a room



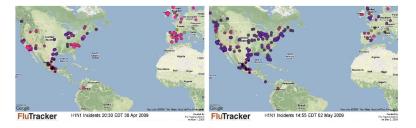
CML

Justification

- throughout history epidemics have played an important role
- epidemics have led to
 - millions of casualties
 - increased health care expenses
 - panic
- not restricted to humans
 - cattle: blue tongue, foot-and-mouth disease
 - plants: Dutch elm disease
 - insects

Epidemic dynamics

- Mainly focus on temporal dynamics in a well-mixed population
- Though, also intriguing spatial dynamics
 - populations are not well-mixed
 - in a globalized world: individuals are highly mobile
 - factors influencing disease spread are spatially heterogeneous



A CCA for epidemic spread (CASIR)

$$S_{i}^{t+1} = S_{i}^{t} - S_{i}^{t} \sum_{c_{j} \in N(c_{i})} w_{ij} H(\mathbf{E}_{i}, d_{ij}) U_{j}^{t}$$
$$U_{i}^{t+1} = I_{i}^{t} + S_{i}^{t} \sum_{c_{j} \in N(c_{i})} w_{ij} H(\mathbf{E}_{i}, d_{ij}) U_{j}^{t} - r U_{i}^{t}$$
$$R_{i}^{t+1} = R_{i}^{t} + r U_{i}^{t}$$

- population subdivided into three groups
 - S: susceptible
 - U: infected
 - R: recovered
- no population growth, nor decline, thus $S_i^t + U_i^t + R_i^t = \text{Cte}, \forall i, t$
- S, U and R are expressed as proportions of the total population in c_i
- $N(c_i)$: c_i 's neighborhood
- w_{ij}: weighting coefficients

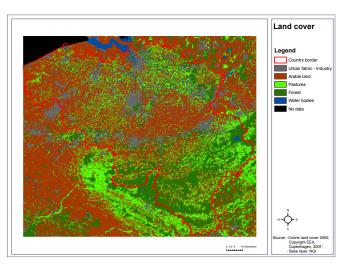
A CCA for epidemic spread (CASIR)

- E_i : spatial information on c_i , *i.e.* 5 land cover classes
- d_{ii} : graph distance between c_i and c_i

Epidemic modeling

A CCA for epidemic spread (CASIR)

• E_i : spatial information on c_i , *i.e.* 5 land cover classes



Application portfolio

A CCA for epidemic spread (CASIR)

- E_i : spatial information on c_i , *i.e.* 5 land cover classes
- d_{ij} : graph distance between c_i and c_j

$$H(\mathbf{E}_i, d_{ij}) = H(\mathcal{C}_i, d_{ij})$$

land cover	d _{ij}	
	0	1
urban	$\nu_{u,0}$	$\nu_{u,1}$
arable land	$ u_{a,0}$	$ u_{a,1}$
pasture	$ u_{p,0}$	$\nu_{p,1}$
forest	$\nu_{f,0}$	$\nu_{f,1}$
water body	$\nu_{w,0}$	$\nu_{w,1}$

Model simulations

Epidemic modeling

Model simulations



Epidemic modeling

Dealing with uncertainty

impreciseness in

- severity initial outbreak
- transmittability
- thus S, U and R are intervals in [0, 1]
 - does not complicate the CCA simulation
 - less computational demanding than a probabilistic approach, e.g. Monte Carlo

Model simulation

Vaguely known initial severity

- virulence known
- number of initially infected individuals in c_m only vaguely known:

$$U_j^0 = \begin{cases} [0.2, 0.4] &, & \text{if } j = m \,, \\ [0, 0] &, & \text{else} \,. \end{cases}$$
(1)

Model simulation

What about the uncertainty?

Wider applicability and perspectives

the generalized model can be used to describe several spatio-temporal diffusion phenomena

- forest fires
- biological invasion
- tumor growth
- urban growth

Perspectives

- sensitivity analysis
- model and/or parameter identification
- validation

- omnipresent in ecosystems
- evolution theory: survival of the fittest
- trade-off between
 - Iocal interactions depending on the spatial species distribution: striking spatio-temporal patterns may evolve

- omnipresent in ecosystems
- evolution theory: survival of the fittest
- trade-off between
 - Iocal interactions depending on the spatial species distribution: striking spatio-temporal patterns may evolve

Paenibacillus dendritiformis

- omnipresent in ecosystems
- evolution theory: survival of the fittest
- trade-off between
 - Iocal interactions that depend on the species distribution in space: striking spatio-temporal patterns may evolve
 - e migration of micro-organisms through space: mixing effect annihilating the effect of species distribution
- biodiversity negatively correlated with the rate of migration
- critical migration threshold ϵ_{crit} above which biodiversity gets lost
- has been described through PDE, IBM and CA

- omnipresent in ecosystems
- evolution theory: survival of the fittest
- trade-off between
 - Iocal interactions that depend on the species distribution in space: striking spatio-temporal patterns may evolve
 - e migration of micro-organisms through space: mixing effect annihilating the effect of species distribution
- biodiversity negatively correlated with the rate of migration
- critical migration threshold ϵ_{crit} above which biodiversity gets lost
- has been described through PDE, IBM and CA

Simulating competition

- inspired on the rock-paper-scissors game
- cyclic dominance

Simulating competition

- inspired on the rock-paper-scissors game
- cyclic dominance

Simplifying assumptions

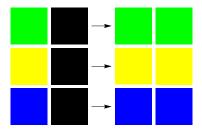
• three subpopulations: A, B

- square grid, $N \times N$ cells
- environmental conditions discarded

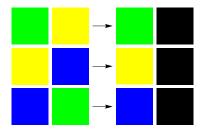
- reproduction (μ)
- selection (σ)
- migration (ϵ)

• reproduction (μ)

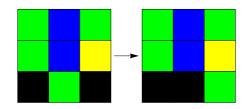
- selection (σ)
- migration (ϵ)



- reproduction (μ)
- selection (σ)
- migration (ϵ)



- reproduction (μ)
- selection (σ)
- migration (ϵ)



- reproduction (μ)
- selection (σ)
- migration (ϵ)

Algorithm

initialization: individuals randomly arranged on the lattice;

foreach time step t do

Select at random one cell c_i ;

Randomly pick one of c_i 's neighbors c_{i_i} ;

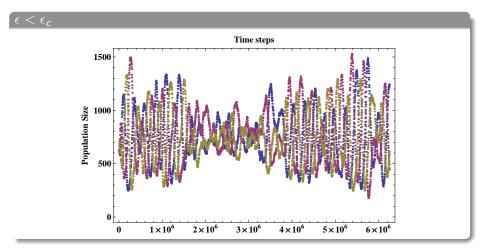
Perform selection, reproduction or migration conform presupposed rates;

Simulation experiments

Set-up

- $N \times N$ cells
- initial population density: 0.25 \mathbf{A} , 0.25 \mathbf{B} , 0.25 \mathbf{C} , 0.25 \mathbf{A} , 0

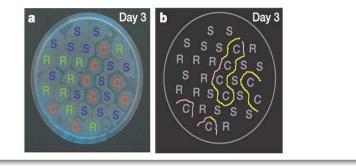
Simulation experiments



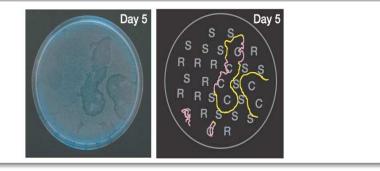
billata in practice Biological d

Simulation experiments

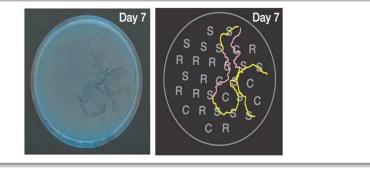
$\epsilon < \epsilon_{c}$

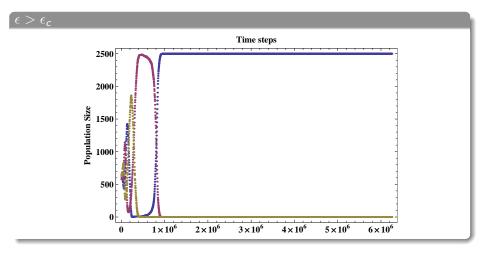


$\epsilon < \epsilon_c$



$\epsilon < \epsilon_c$





Continuum limit

- distance between cells δx decreases as $N \uparrow$
- in the continuum limit $\delta x \to 0$ as $N \to \infty$
- gives rise to a stochastic PDE

A biofilm

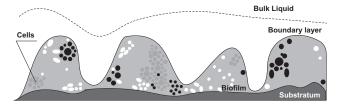
- a cluster of microorganisms
- adhered to each other and/or to a surface
- embedded in an extracellular polymeric substance
- omnipresent: bioreactors, hulls, pipes, soil, ...

A biofilm

- a cluster of microorganisms
- adhered to each other and/or to a surface
- embedded in an extracellular polymeric substance
- omnipresent: bioreactors, hulls, pipes, soil, ...

Processes of concern

- substrate diffusion
- substrate consumption
- microbial growth
- attachment and detachment



CA-Film

Historical background

- CA introduced in 1992 by Colasanti for coping with heterogeneity
- elaborated in the nineties by Wimpenny & Colasanti, Picioreanu et al. and others
- 2D or 3D, pure CA or hybrids (CA-PDE)

Model setup

- hybrid CA-CCA model
 - microbial growth: stochastic CA
 - substrate diffusion: CCA
- square or irregular tessellation
- attachment and detachment to be incorporated
- environmental conditions steer the microbial growth process
- model parameters embody environmental conditions

Substrate diffusion

• described by a CCA:

$$S(c_i,t+1) = \sum_{c_j \in \mathcal{N}(c_i) \setminus \{c_i\}} rac{S(c_j,t)}{w_{ij}}$$

- similar to the model for 2D heat flow (diffusion)
- steady-state solution approaches the solution of the Laplace equation

Microbial growth

in every time step

- substrate availability in each cell c_i is checked
- according to the substrate availability one cell is picked to split
- new cell is placed in the neighboring lattice site which has the highest substrate availability

stochasticity involved through (2)

Substrate utilization

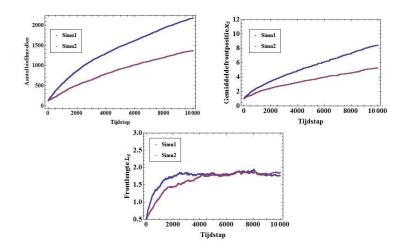
- growth
 - substrate originating from $N(c_i)$
 - cover biomass increase due to growth
- maintenance
 - substrate from c_i
 - cover the cell's energy consumption for maintenance

Setup

- impermeable surface at x = 0
- bulk fluid at x = I
- homogeneous substrate concentration
- initial colonization on the surface

Optimal environmental conditions

Suboptimal environmental conditions



Optimal environmental conditions

Motivation

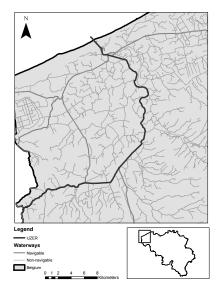
- northern pike (*Esox lucius* L.) populations in Belgium suffer from habitat deterioration
- restoration programs not successful
- insight into the spatio-temporal distribution of pike required
- tracking of species is costly and labour-intensive
- simulation-based approach is a worthy alternative

development of a discrete model for mimicking the spatio-temporal dynamics of northern pike in the river Yser.

Fish migration

Northern pike

- solitary predator
- study area



northern pike

- solitary predator
- study area
- three distinct seasons during a one year's cycle
 - spawning season: March-May
 - migration towards spawning grounds
 - not limited to territory
 - passive sedentary season: May-December
 - sit-and-wait strategy
 - home range: 50 m
 - active sedentary season: December-March
 - home range: 200m
 - territory

Simulation

Link to local file

Introduction

Importance of fungi

- degradation processes
- symbiosis
- crop failure
- production of antibiotics, citric acid

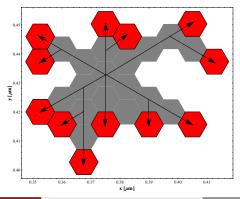
• . . .

Model organism

- R. solani
- soil fungus
- develops a hyphal network

Modelling approach

- two-dimensional
- hexagonal cells
- fungus grows along the cells' diagonals
- Δt steered by CFL-condition and maximum probability
- $\Delta x = \text{diameter of the hyphae}$



Baetens & De Baets (KERMIT)

Application portfolio

Simulation

Introduction

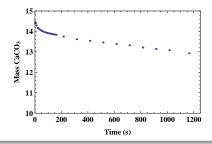
- numerous CA-based models developed
- mostly only qualitative agreement between observed and simulated process
- validity doubtful
- chemical processes of interest
 - arbitrary chemical reactions: stochastic CA
 - diffusion processes: CCA
 - clock reactions: cyclic CA

Chemical reactions

- 2D/3D CA simulating chemical reactions at molecular level
- no homogeneity assumption required
- stochastic nature: reaction probabilities
- can be traced to macroscopic reaction rates

Exemplary reaction

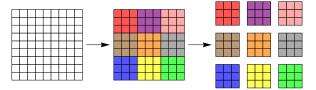
 $\mathsf{CaCO}_3(\mathsf{s}) + 2\,\mathsf{HCI}(\mathsf{aq}) \to \mathsf{CaCI}_2(\mathsf{aq}) + \mathsf{CO}_2(\mathsf{g}) + \mathsf{H}_2\mathsf{O}(\mathsf{I})$



Baetens & De Baets (KERMIT)

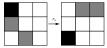
CA-based model

- stochastic CA
 - square tessellation
 - Moore neighborhood
 - states: HCl (gray), CaCO₃ (black) and H₂O (white)
 - initial condition: state according to the molar ratios of the reactants and water in the experiment
- block CA paradigm
 - step 0: splitting

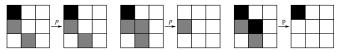


CA-based model

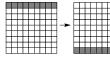
- block CA paradigm
 - step 1: diffusion



• step 2: reaction



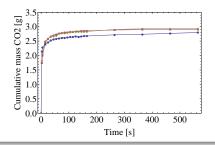
• step 3: shuffle



Chemical reactions

Parameter optimization

- goal: tuning the model parameter(s) such that discrepancies between model output and observed data are minimized
 - model output: simulated loss of CaC0₃ molecules
 - observed data: time series of CaC0₃ loss
- particle-swarm optimization
- Pearson correlation coefficient higher than 0.95



Baetens & De Baets (KERMIT)

Diffusion processes

- microscopic level: CA
 - stochastic
 - requires asynchronous updating or block CA to assure conservation of mass
 - computationally demanding
- mesoscopic level: CCA
 - formulation similar to CCA for heat flow
 - steady-state solution approaches the outcome of the Laplace equation
 - less computationally demanding

ISI papers

Baetens J. M. and B. De Baets. Topology-induced phase transitions in cellular automata. *Physica D: Nonlinear Phenomena*, 2013.

Baetens J. M., K. De Loof, and B. De Baets.

Influence of the topology of a cellular automaton on its dynamical properties.

Communications in Nonlinear Science and Numerical Simulations, 18:651–668, 2013.

- J. M. Baetens and B. De Baets. Cellular automata on irregular tessellations. Dynamical Systems, 27:411–430, 2012.
- J. M. Baetens, P. Van der Weeën, and B. De Baets. Effect of asynchronous updating on the stability of cellular automata. *Chaos, Solitons & Fractals*, 45:383–394, 2012.

ISI papers

I. S. Pauwels, A. M. Mouton, J. M. Baetens, S. Van Nieuland, B. De Baets, and P. Goethals.
 Modelling a pike (*Esox lucius*) population in a lowland river using a cellular automaton.

Ecological Informatics, In press:x-y, 2012.

- P. Van der Weeën, J. M. Baetens, J. Verwaeren, X. Van Doorslaer, P. M. Heynderickx, J. Dewulf, and B. De Baets.
 Modeling the photocatalytic degradation of fluoroquinolones by means of a stochastic cellular automaton.
 Chemical Engineering Journal, 188:181–190, 2012.
- J. M. Baetens and B. De Baets. On the topological sensitivity of cellular automata. *Chaos*, 21:023108, 2011.

ISI papers

P. Van der Weeën, J. M. Baetens, and B. De Baets. Design and parameterization of a stochastic cellular automaton describing a chemical reaction.

Journal of Computational Chemistry, 32:1952–1961, 2011.

J. M. Baetens and B. De Baets.

Phenomenological study of irregular cellular automata based on Lyapunov exponents and Jacobians.

Chaos, 20:033112, 2010.

Wolfram Demonstrations

- Heat flow model http://demonstrations.wolfram.com/ACellularAutomatonBasedH
- Greenberg-Hastings model http://demonstrations.wolfram.com/GreenbergHastingsModel/

Epilogue

More information?

jan.baetens@ugent.be

http://users.ugent.be/~jbaetens

http://www.kermit.ugent.be